metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diamminebis[5-(pyrimidin-2-yl- κN^1)tetrazolato- κN^1]copper(II) dihydrate

Ju-Tao Liu* and Sheng-Di Fan

School of Life Sciences, Dalian Nationalities University, Dalian 116600, People's Republic of China

Correspondence e-mail: jutaoliu@yahoo.com.cn

Received 1 May 2007; accepted 11 June 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.097; data-to-parameter ratio = 13.8.

The title compound, $[Cu(C_5H_3N_6)_2(NH_3)_2]\cdot 2H_2O$, consists of a mononuclear copper complex and two solvent water molecules. The center Cu^{II} ion is coordinated by two NH₃ and two 5-(pyrimidin-2-yl)tetrazolato ligands through the tetrazole N atoms in the 1 positions to form a square geometry. The two axial positions are occupied by weakly coordinated pyrimidinyl N atoms, thus giving rise to a highly distorted octahedral geometry. Furthermore, extensive intermolecular hydrogen-bond interactions lead to the formation of a threedimensional network.

Related literature

For related literature, see: Demko & Sharpless (2001); Rodríguez et al. (2005).

Experimental

Crystal data

[Cu(C5H3N6)2(NH3)2]·2H2O $M_{\rm r} = 427.91$ Triclinic, P1 a = 7.1533 (12) Å b = 9.5708 (16)Å c = 13.155 (2) Å $\alpha = 97.048 (3)^{\circ}$ $\beta = 90.214 \ (2)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 1998)

 $\gamma = 97.777 \ (3)^{\circ}$ V = 885.4 (2) Å³

Mo $K\alpha$ radiation

 $0.22 \times 0.22 \times 0.20$ mm

 $\mu = 1.27 \text{ mm}^{-1}$

T = 294 (2) K

Z = 2

 $T_{\min} = 0.975, T_{\max} = 1.000$ (expected range = 0.756–0.775) 5086 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.097$	independent and constrained
S = 1.04	refinement
3549 reflections	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
257 parameters	$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$
4 restraints	

3549 independent reflections 3104 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.023$

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	2.0170 (18)	Cu1-N11	2.429 (2)
Cu1-N5	2.728 (2)	Cu1-N13	1.990 (2)
Cu1-N7	2.0447 (19)	Cu1-N14	1.992 (2)
N13-Cu1-N14	173.45 (9)	N1-Cu1-N7	173.28 (7)
N13-Cu1-N1	90.18 (8)	N13-Cu1-N11	94.55 (8)
N14-Cu1-N1	91.95 (8)	N14-Cu1-N11	91.24 (8)
N13-Cu1-N7	88.98 (8)	N1-Cu1-N11	98.88 (7)
N14-Cu1-N7	89.61 (8)	N7-Cu1-N11	74.54 (7)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N14 $-$ H14 A ···O1 W	0.89	2.56	3.332 (4)	145
$N14-H14A\cdots N4^{i}$	0.89	2.59	3.209 (3)	127
$N14 - H14B \cdot \cdot \cdot N6^{i}$	0.89	2.52	3.345 (3)	154
$N14-H14C\cdots N12^{ii}$	0.89	2.48	3.339 (3)	162
$N13-H13A\cdots N4^{iii}$	0.89	2.47	3.137 (3)	132
$N13 - H13B \cdot \cdot \cdot N12^{iv}$	0.89	2.48	3.325 (3)	158
$O2W - H2WA \cdots N9^{v}$	0.85(1)	2.07 (2)	2.901 (3)	168 (5)
$O1W - H1WA \cdots N3^{i}$	0.85(1)	2.23 (2)	3.053 (3)	165 (5)
O1W-H1 WA ···N4 ⁱ	0.85(1)	2.59 (4)	3.227 (3)	133 (5)
$O2W - H2WB \cdot \cdot \cdot N8^{vi}$	0.85(1)	2.199 (12)	3.041 (4)	172 (4)
$O1W - H1WB \cdots O2W$	0.84 (1)	2.01 (2)	2.825 (4)	161 (5)
6	. 4	a 1. (")	1	

(iii) -x, -y + 2, -z + 1; (iv) -x, -y + 2, -z; (v) -x + 1, -y + 1, -z; (vi) x + 1, y, z.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors thank Dalian Nationalities University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2035).

References

- Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.
- Rodríguez, A., Kivekäsb, R. & Colacio, E. (2005). Chem. Commun. pp. 5228-5230.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m1942 [doi:10.1107/S1600536807028668]

Diamminebis[5-(pyrimidin-2-yl- κN^1)tetrazolato- κN^1]copper(II) dihydrate

J.-T. Liu and S.-D. Fan

Comment

The crystal structures of Fe(II) and Co(II) complexes with 5-(pyrimidin-2-yl)tetrazolate ligand have been reported recently (Rodríguez et al., 2005), which feature a two-dimensional square-grid-like network. And, the ligands coordinate to metal atoms through one of the pyrimidinyl nitrogen atoms and the 1- and 3-positon tetrazole nitrogen atoms. The title complex, diamminobis[5-(pyrimidin-2-yl- κ N¹)tetrazolato- κ N¹]copper(II) dehydrate (I) performs a mono-nuclear structure (Fig. 1), in which the center Cu^{II} atom, located on a normal position, is normally coordinated by two NH₃ and two ligand molecules using tetrazole N atoms in 1-position to form a square geometry. Simultaneously, two apical positions in Cu^{II} atom form weak coordination (Cu1—N11 = 2.429 (2) and Cu1—N5 = 2.728 (2) Å) with two pyrimidinyl N atoms of two ligands, thus giving a highly distorted octahedral geometry (see Table 1). In addition, a three-dimensional supramolecular framework (Fig. 2) is formed by the intermolecular extensive N—H···O, N—H···N, O—H···N and O—H···O hydrogen-bond interactions between parking water molecules and complex molecules. The hydrogen bond parameters are listed in Table 2.

Experimental

TThe ligand, 2-(1*H*-tetrazol-5-yl)pyrimidine (*L*) was synthesized according to the literature method (Demko & Sharpless, 2001). CuCl₂·2H₂O (34 mg, 0.2 mmol) and *L* (60 mg, 0.4 mmol) were dissolved in ammonium hydroxide (20%, 10 ml). The solution was filtered, and then filtrate was allowed to stand for about 10 days. Blue crystals of (I) were isolated in about 30% yield.

Refinement

H atoms bound to carbon and amine were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 and N—H = 0.89 Å and $U_{iso}(H) = 1.2$ and 1.5 $U_{eq}(C \text{ and } N)$, respectively. The H atoms of the water molecules were located in Fourier difference maps and refined with isotropic displacement parameters set at 1.5 times those of the parent O atoms.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Three-dimensional hydrogen-bonded network.

$Diammine bis [5-(pyrimidin-2-yl-\kappa N^1) tetrazolato-\kappa N^1] copper (II) \ dihydrate$

Crystal data	
[Cu(C5H3N6)2(NH3)2]·2H2O	Z = 2
$M_r = 427.91$	$F_{000} = 438$
Triclinic, <i>P</i> 1	$D_{\rm x} = 1.605 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.1533 (12) Å	Cell parameters from 3035 reflections
<i>b</i> = 9.5708 (16) Å	$\theta = 2.5 - 26.4^{\circ}$
<i>c</i> = 13.155 (2) Å	$\mu = 1.28 \text{ mm}^{-1}$
$\alpha = 97.048 \ (3)^{\circ}$	T = 294 (2) K
$\beta = 90.214 \ (2)^{\circ}$	Block, blue
$\gamma = 97.777 \ (3)^{\circ}$	$0.22\times0.22\times0.20\ mm$
V = 885.4 (2) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	3549 independent reflections
Radiation source: fine-focus sealed tube	3104 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 294(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -6 \rightarrow 8$
$T_{\min} = 0.975, T_{\max} = 1.000$	$k = -11 \rightarrow 10$
5086 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0583P)^2 + 0.2049P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
3549 reflections	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$

257 parameters

4 restraints

 $\Delta \rho_{min} = -0.63 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97, Fc^{*}=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4}

Primary atom site location: structure-invariant direct Extinction coefficient: 0.096 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.23179 (3)	0.95624 (3)	0.245828 (19)	0.02515 (13)
N1	0.2492 (3)	1.0675 (2)	0.38683 (14)	0.0257 (4)
N2	0.2601 (3)	1.2084 (2)	0.41174 (16)	0.0352 (5)
N3	0.2667 (3)	1.2353 (2)	0.51209 (17)	0.0402 (5)
N4	0.2606 (3)	1.1139 (2)	0.55440 (15)	0.0333 (5)
N5	0.2149 (3)	0.7757 (2)	0.39173 (18)	0.0384 (5)
N6	0.2597 (4)	0.8204 (2)	0.57417 (18)	0.0448 (6)
N7	0.2131 (3)	0.8657 (2)	0.09642 (15)	0.0285 (4)
N8	0.1767 (3)	0.7331 (2)	0.04961 (17)	0.0389 (5)
N9	0.1783 (4)	0.7390 (3)	-0.05057 (18)	0.0469 (6)
N10	0.2150 (3)	0.8732 (3)	-0.07049 (16)	0.0410 (5)
N11	0.2867 (3)	1.1532 (2)	0.14470 (15)	0.0314 (4)
N12	0.2938 (3)	1.1822 (3)	-0.03200 (16)	0.0418 (5)
C1	0.2495 (3)	1.0122 (2)	0.47534 (17)	0.0246 (5)
C2	0.2402 (3)	0.8601 (2)	0.48099 (18)	0.0282 (5)
C3	0.2101 (5)	0.6381 (3)	0.3973 (3)	0.0554 (8)
H3A	0.1921	0.5751	0.3373	0.067*
C4	0.2309 (5)	0.5847 (3)	0.4888 (3)	0.0641 (10)
H4A	0.2287	0.4879	0.4916	0.077*
C5	0.2547 (5)	0.6800 (3)	0.5747 (3)	0.0642 (10)
H5A	0.2683	0.6461	0.6373	0.077*
C6	0.2364 (3)	0.9490 (3)	0.02177 (17)	0.0284 (5)
C7	0.2752 (3)	1.1045 (3)	0.04536 (18)	0.0291 (5)
C8	0.3217 (4)	1.2939 (3)	0.1692 (2)	0.0407 (6)
H8A	0.3323	1.3316	0.2379	0.049*
С9	0.3426 (4)	1.3842 (3)	0.0953 (2)	0.0478 (7)
H9A	0.3662	1.4822	0.1124	0.057*
C10	0.3270 (4)	1.3236 (3)	-0.0047 (2)	0.0502 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H10A	0.3399	1.3827	-0.0560	0.060*
N14	0.5061 (3)	0.9386 (3)	0.24816 (16)	0.0369 (5)
H14A	0.5254	0.8682	0.2835	0.055*
H14B	0.5704	1.0196	0.2777	0.055*
H14C	0.5449	0.9203	0.1843	0.055*
N13	-0.0473 (3)	0.9502 (3)	0.24504 (15)	0.0383 (5)
H13A	-0.0986	0.8813	0.2801	0.057*
H13B	-0.0915	0.9334	0.1807	0.057*
H13C	-0.0768	1.0332	0.2739	0.057*
O1W	0.6222 (4)	0.6186 (4)	0.2726 (2)	0.0799 (8)
H2WA	0.895 (7)	0.449 (3)	0.145 (4)	0.120*
H1WA	0.655 (7)	0.643 (6)	0.3348 (14)	0.120*
O2W	0.9450 (4)	0.5292 (3)	0.17569 (19)	0.0651 (6)
H2WB	1.008 (6)	0.579 (4)	0.135 (3)	0.098*
H1WB	0.731 (3)	0.610 (6)	0.251 (3)	0.098*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01906 (17)	0.0352 (2)	0.02059 (18)	0.00532 (11)	-0.00056 (10)	-0.00088 (11)
N1	0.0269 (10)	0.0287 (10)	0.0217 (9)	0.0063 (8)	0.0015 (7)	0.0010 (8)
N2	0.0455 (13)	0.0277 (10)	0.0331 (11)	0.0075 (9)	0.0035 (9)	0.0042 (9)
N3	0.0575 (15)	0.0301 (11)	0.0322 (12)	0.0083 (10)	0.0039 (10)	-0.0019 (9)
N4	0.0457 (12)	0.0274 (10)	0.0259 (10)	0.0048 (9)	0.0015 (9)	0.0000 (8)
N5	0.0390 (12)	0.0318 (11)	0.0415 (13)	0.0038 (9)	0.0001 (10)	-0.0051 (9)
N6	0.0580 (15)	0.0366 (12)	0.0408 (13)	0.0028 (11)	-0.0064 (11)	0.0130 (10)
N7	0.0244 (10)	0.0329 (10)	0.0269 (10)	0.0040 (8)	-0.0010 (8)	-0.0012 (8)
N8	0.0427 (13)	0.0353 (12)	0.0363 (12)	0.0059 (10)	-0.0024 (9)	-0.0054 (9)
N9	0.0540 (15)	0.0445 (14)	0.0380 (13)	0.0049 (11)	-0.0038 (11)	-0.0101 (10)
N10	0.0474 (13)	0.0467 (14)	0.0263 (11)	0.0057 (11)	-0.0018 (9)	-0.0056 (10)
N11	0.0341 (11)	0.0340 (11)	0.0259 (10)	0.0057 (9)	0.0019 (8)	0.0016 (8)
N12	0.0441 (13)	0.0507 (14)	0.0296 (11)	-0.0030 (11)	-0.0026 (9)	0.0113 (10)
C1	0.0214 (10)	0.0305 (12)	0.0211 (11)	0.0040 (9)	0.0002 (8)	0.0004 (9)
C2	0.0238 (11)	0.0277 (12)	0.0327 (12)	0.0026 (9)	0.0006 (9)	0.0039 (10)
C3	0.0542 (19)	0.0307 (15)	0.076 (2)	0.0039 (13)	-0.0033 (16)	-0.0113 (14)
C4	0.067 (2)	0.0276 (15)	0.099 (3)	0.0053 (14)	-0.006 (2)	0.0125 (17)
C5	0.081 (2)	0.0436 (18)	0.074 (2)	0.0062 (17)	-0.0107 (19)	0.0299 (17)
C6	0.0199 (10)	0.0409 (13)	0.0234 (11)	0.0045 (9)	-0.0001 (8)	-0.0007 (9)
C7	0.0202 (11)	0.0407 (13)	0.0258 (12)	0.0033 (9)	0.0002 (9)	0.0033 (10)
C8	0.0456 (15)	0.0358 (14)	0.0389 (14)	0.0051 (11)	0.0020 (12)	-0.0015 (11)
C9	0.0487 (17)	0.0344 (14)	0.0589 (19)	-0.0019 (12)	0.0016 (14)	0.0089 (13)
C10	0.0549 (18)	0.0475 (17)	0.0496 (17)	-0.0036 (14)	0.0000 (14)	0.0239 (14)
N14	0.0262 (10)	0.0590 (14)	0.0258 (10)	0.0120 (10)	-0.0029 (8)	0.0000 (9)
N13	0.0230 (10)	0.0663 (15)	0.0250 (10)	0.0072 (10)	-0.0001 (8)	0.0023 (10)
O1W	0.0835 (19)	0.094 (2)	0.0572 (16)	0.0256 (17)	-0.0117 (15)	-0.0251 (15)
O2W	0.0788 (18)	0.0543 (14)	0.0550 (14)	0.0030 (12)	0.0053 (12)	-0.0155 (11)

Geometric parameters (Å, °)

Cu1—N1	2.0170 (18)	N12—C10	1.345 (4)
Cu1—N5	2.728 (2)	C1—C2	1.459 (3)
Cu1—N7	2.0447 (19)	C3—C4	1.379 (5)
Cu1—N11	2.429 (2)	С3—НЗА	0.9300
Cu1—N13	1.990 (2)	C4—C5	1.357 (5)
Cu1—N14	1.992 (2)	C4—H4A	0.9300
N1—C1	1.337 (3)	C5—H5A	0.9300
N1—N2	1.339 (3)	C6—C7	1.471 (3)
N2—N3	1.313 (3)	C8—C9	1.374 (4)
N3—N4	1.344 (3)	C8—H8A	0.9300
N4—C1	1.329 (3)	C9—C10	1.369 (4)
N5—C3	1.324 (4)	С9—Н9А	0.9300
N5—C2	1.338 (3)	C10—H10A	0.9300
N6—C2	1.339 (3)	N14—H14A	0.8900
N6—C5	1.341 (4)	N14—H14B	0.8900
N7—N8	1.332 (3)	N14—H14C	0.8900
N7—C6	1.336 (3)	N13—H13A	0.8900
N8—N9	1.326 (3)	N13—H13B	0.8900
N9—N10	1.334 (3)	N13—H13C	0.8900
N10—C6	1.332 (3)	O1W—H1WA	0.846 (10)
N11—C7	1.331 (3)	O1W—H1WB	0.843 (10)
N11—C8	1.334 (3)	O2W—H2WA	0.849 (10)
N12—C7	1.329 (3)	O2W—H2WB	0.848 (10)
N13—Cu1—N14	173.45 (9)	С4—С3—НЗА	118.8
N13—Cu1—N1	90.18 (8)	C5—C4—C3	117.0 (3)
N14—Cu1—N1	91.95 (8)	С5—С4—Н4А	121.5
N13—Cu1—N7	88.98 (8)	С3—С4—Н4А	121.5
N14—Cu1—N7	89.61 (8)	N6—C5—C4	123.4 (3)
N1—Cu1—N7	173.28 (7)	N6—C5—H5A	118.3
N13—Cu1—N11	94.55 (8)	С4—С5—Н5А	118.3
N14—Cu1—N11	91.24 (8)	N10—C6—N7	111.5 (2)
N1—Cu1—N11	98.88 (7)	N10—C6—C7	127.4 (2)
N7—Cu1—N11	74.54 (7)	N7—C6—C7	121.1 (2)
C1—N1—N2	106.16 (18)	N12—C7—N11	126.4 (2)
C1—N1—Cu1	125.67 (16)	N12—C7—C6	118.5 (2)
N2—N1—Cu1	128.17 (15)	N11—C7—C6	115.1 (2)
N3—N2—N1	107.98 (19)	N11—C8—C9	121.5 (3)
N2—N3—N4	110.3 (2)	N11—C8—H8A	119.2
C1—N4—N3	104.76 (19)	С9—С8—Н8А	119.2
C3—N5—C2	115.6 (3)	C10C9C8	117.1 (3)
C2—N6—C5	114.4 (3)	С10—С9—Н9А	121.5
N8—N7—C6	105.87 (19)	С8—С9—Н9А	121.5
N8—N7—Cu1	134.76 (17)	N12—C10—C9	122.9 (3)
C6—N7—Cu1	119.35 (16)	N12-C10-H10A	118.6
N9—N8—N7	107.8 (2)	С9—С10—Н10А	118.6
N8—N9—N10	110.8 (2)	Cu1—N14—H14A	109.5

supplementary materials

C6—N10—N9	104 1 (2)	Cu1—N14—H14B	109.5
C7—N11—C8	116.9 (2)	H14A—N14—H14B	109.5
C7—N11—Cu1	109 90 (16)	Cu1—N14—H14C	109.5
C8—N11—Cu1	133 21 (17)	H14A—N14—H14C	109.5
C7 - N12 - C10	115 2 (2)	H14B—N14—H14C	109.5
N4— $C1$ — $N1$	110.8 (2)	Cu1—N13—H13A	109.5
N4-C1-C2	126.1.(2)	Cu1—N13—H13B	109.5
N1-C1-C2	123.1(2)	$H13\Delta$ _N13_H13B	109.5
N5-C2-N6	123.1(2) 127.2(2)	Cu1—N13—H13C	109.5
$N_{5} - C_{2} - C_{1}$	127.2(2)	$H13\Delta$ _N13_H13C	109.5
$N_{6} - C_{2} - C_{1}$	116.8 (2)	H13B_N13_H13C	109.5
$N_5 - C_3 - C_4$	1224(3)	H1WA_O1W_H1WB	96 (5)
N5_C3_H3A	1122.4 (3)	$H_2WA = 02W = H_2WB$	112(5)
	00.05 (10)		0.5 (4)
NI3—Cul—NI—Cl	92.85 (19)	C_{3} —N5— C_{2} —N6	-0.5 (4)
NI4—CuI—NI—CI	-80.95 (19)	$C_3 = N_5 = C_2 = C_1$	1/8.8 (2)
NII—Cul—NI—Cl	-172.51 (18)	C5—N6—C2—N5	0.8 (4)
N13—Cu1—N1—N2	-86.2 (2)	C5—N6—C2—C1	-178.4 (3)
N14—Cu1—N1—N2	100.0 (2)	N4—C1—C2—N5	175.0 (2)
N11—Cu1—N1—N2	8.5 (2)	N1—C1—C2—N5	-5.5 (3)
C1—N1—N2—N3	0.0 (3)	N4—C1—C2—N6	-5.7 (4)
Cu1—N1—N2—N3	179.19 (16)	N1—C1—C2—N6	173.8 (2)
N1—N2—N3—N4	0.1 (3)	C2—N5—C3—C4	-0.4(5)
N2—N3—N4—C1	-0.2 (3)	N5—C3—C4—C5	0.7 (5)
N13—Cu1—N7—N8	-83.5 (2)	C2—N6—C5—C4	-0.4(5)
N14—Cu1—N7—N8	90.1 (2)	C3—C4—C5—N6	-0.3 (6)
N11—Cu1—N7—N8	-178.6 (2)	N9—N10—C6—N7	-0.3 (3)
N14—Cu1—N7—C6	-91.74 (18)	N9—N10—C6—C7	-178.6 (2)
N11—Cu1—N7—C6	-0.35 (16)	N8—N7—C6—N10	0.3 (3)
C6—N7—N8—N9	-0.1 (3)	Cu1—N7—C6—N10	-178.39 (16)
Cu1—N7—N8—N9	178.26 (17)	N8—N7—C6—C7	178.7 (2)
N7—N8—N9—N10	-0.1 (3)	Cu1—N7—C6—C7	0.0 (3)
N8—N9—N10—C6	0.3 (3)	C10-N12-C7-N11	-0.2 (4)
N13—Cu1—N11—C7	-86.98 (16)	C10—N12—C7—C6	179.3 (2)
N14—Cu1—N11—C7	89.95 (16)	C8—N11—C7—N12	-0.5 (4)
N1—Cu1—N11—C7	-177.88 (15)	Cu1—N11—C7—N12	178.6 (2)
N7—Cu1—N11—C7	0.69 (15)	C8—N11—C7—C6	180.0 (2)
N13—Cu1—N11—C8	91.9 (2)	Cu1—N11—C7—C6	-0.9 (2)
N14—Cu1—N11—C8	-91.1 (2)	N10-C6-C7-N12	-0.7 (4)
N1—Cu1—N11—C8	1.0 (2)	N7—C6—C7—N12	-178.8 (2)
N7—Cu1—N11—C8	179.6 (3)	N10-C6-C7-N11	178.8 (2)
N3—N4—C1—N1	0.2 (3)	N7—C6—C7—N11	0.7 (3)
N3—N4—C1—C2	179.8 (2)	C7—N11—C8—C9	0.8 (4)
N2—N1—C1—N4	-0.2 (3)	Cu1—N11—C8—C9	-178.1 (2)
Cu1—N1—C1—N4	-179.34 (15)	N11-C8-C9-C10	-0.4 (4)
N2—N1—C1—C2	-179.7 (2)	C7—N12—C10—C9	0.6 (4)
Cu1—N1—C1—C2	1.1 (3)	C8—C9—C10—N12	-0.4 (5)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N14—H14A…O1W	0.89	2.56	3.332 (4)	145
N14—H14A…N4 ⁱ	0.89	2.59	3.209 (3)	127
N14—H14B…N6 ⁱ	0.89	2.52	3.345 (3)	154
N14—H14C…N12 ⁱⁱ	0.89	2.48	3.339 (3)	162
N13—H13A…N4 ⁱⁱⁱ	0.89	2.47	3.137 (3)	132
N13—H13B…N12 ^{iv}	0.89	2.48	3.325 (3)	158
O2W—H2WA…N9 ^v	0.85 (1)	2.07 (2)	2.901 (3)	168 (5)
O1W—H1WA…N3 ⁱ	0.85 (1)	2.23 (2)	3.053 (3)	165 (5)
O1W—H1WA…N4 ⁱ	0.85 (1)	2.59 (4)	3.227 (3)	133 (5)
O2W—H2WB…N8 ^{vi}	0.85 (1)	2.199 (12)	3.041 (4)	172 (4)
O1W—H1WB···O2W	0.84 (1)	2.01 (2)	2.825 (4)	161 (5)
Symmetry codes: (i) $-x+1$, $-y+2$, $-z+1$; (ii) $-x$	z+1, -y+2, -z; (iii) $-x,$	-y+2, -z+1; (iv) $-x, -z+1;$	-y+2, -z; (v) -x+1, -z	-y+1, -z; (vi) x+1, y, z

Hydrogen-bond geometry (Å, °)

Fig. 2